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P lant diseases caused by microorganisms like fungi, bacteria, and insects can have
devastating effects on crop productivity and quality. Detecting and identifying

plant diseases is essential for effective management and sustainable agriculture. Com-
puter vision-based image analysis employing deep learning techniques has emerged as
a promising solution for efficient and timely disease identification in crops. This study
aimed to enhance the classification performance of plant leaf disease images from the
PlantDoc dataset by employing an ensemble CNN technique. Seven pre-trained CNN
models were trained on the dataset, and a SoftMax Averaging ensemble technique
was used to achieve superior plant disease classification performance. The proposed
approach outperformed previous studies by a great margin, achieving an accuracy
of 98.66%. The SoftMax Averaging ensemble technique allowed for a more diverse
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range of feature extraction and improved classification accuracy which can effectively
address the challenge of plant disease classification.

1.1 INTRODUCTION

Plant diseases refer to ailments that affect the health and productivity of crops,
often caused by insidious microorganisms like fungi, bacteria, and insects. These dis-
eases can result in devastating consequences such as yield losses and reduced crop
quality[10]. Timely detection and accurate identification are crucial for effective man-
agement [12]. Globally conducted surveys have shed light on the pervasive impact of
plant diseases on agricultural production. Despite farmers contributing over 80% of
the world’s agricultural output, more than 50% of this output is lost due to pests and
diseases, resulting in disruptions to the food supply and widespread food insecurity.
The effects of climate change have further exacerbated this situation, with plant pests
causing increasing damage to crucial cash crops, posing threats to both food security
and the environment. The Food and Agricultural Organization (FAO) estimates that
up to 40% of the world’s crop yield is lost to pests annually, resulting in losses of at
least $70 billion and an annual economic loss of more than $220 billion due to plant
diseases [11].

Conventional methods of manually surveying fields and employing traditional
strategies to control plant diseases have proven to be inefficient and time-consuming,
often resulting in delays in disease analysis. Additionally, visual analysis by qualified
plant pathologists can introduce subjective biases into the process. For expeditious
and efficient disease identification in crops, computer vision-based image analysis em-
ploying cutting-edge techniques has emerged as a promising solution to these restric-
tions [14]. Previous studies in the field of plant disease detection relied on methods
such as shape, color, and texture feature extraction along with traditional machine
learning classifiers. However, more recent studies have extensively utilized deep learn-
ing techniques, with convolutional neural networks (CNNs) showing promising results
[13].

In light of the aforementioned considerations, this research endeavours to ad-
dress the challenge of plant disease classification through the application of advanced
deep learning networks. The main goal of this study is to enhance the classification
performance of plant leaf disease images from the PlantDoc dataset by employing
an ensemble CNN technique. To achieve this, seven cutting-edge pre-trained CNN
models, namely, DenseNet201, Xception, EfficientNetB6, InceptionResNetV2, Incep-
tionV3, ResNet50, and MobileNetV2, were selected and individually trained on the
PlantDoc dataset [2]. Subsequently, these models were utilized for a SoftMax Av-
eraging ensemble technique, aiming to achieve superior plant disease classification
performance. We perform a detailed analysis of our model’s performance, includ-
ing a comparison with other state-of-the-art methods, and provide insights into the
strengths and limitations of our proposed approach.
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1.2 LITERATURE REVIEW

Previous research conducted by Saanidhya et al. employed deep learning techniques,
training six standard pre-trained networks using a modified PlantVillage dataset
[15]. Aanis et al. divulged intriguing insights into the accuracy of the Xception model
when subjected to images from the PlantDoc dataset achieving a testing accuracy
of 81.53%. However, during subsequent generalization tests, the accuracy dropped
to 61%, underscoring the need for further improvements in model performance [14].
Sumaiya et al. embarked on a comprehensive evaluation of three distinct CNN image
classifiers—Mobilenet, InceptionResnetV2, and Xception—to ascertain their perfor-
mance on the PlantVillage dataset [17]. Xin et al. opted for ResNet50, MobileNetV2,
and DenseNet121 as their models of choice, with DenseNet121 demonstrating supe-
rior performance by achieving an accuracy of 86.36% on the PlantDoc dataset [20].
Thipwimon et al. trained and evaluated five CNN models, including MobileNetV1,
MobileNetV2, NASNetMobile, DenseNet121, and Xception, on multiple leaf dis-
ease datasets [18]. Thararat et al. analyzed multiple deep learning methods, includ-
ing VGG16, MobileNetV2, InceptionResNetV2, and DenseNet201, on the PlantDoc
dataset for plant leaf and plant leaf disease image classification obtaining an accuracy
of 69.51% [16].

It is important to note that these groundbreaking works are not without limi-
tations. They are confined either to specific crops or datasets that are not publicly
available. As of now, the PlantVillage dataset (PVD) and the PlantDoc dataset [2]
remain the only publicly accessible datasets for plant disease detection. However, it is
worth mentioning that the PlantVillage dataset comprises images taken in controlled
laboratory setups, whereas the PlantDoc dataset contains authentic images captured
from real-world cultivation fields, thus lending greater credibility to its efficacy in
practical applications.

1.3 MATERIALS AND METHODS

In this section, dataset preparation and proposed methodologies have been discussed.

1.3.1 Dataset Selection and Description

Researchers have produced numerous datasets related to plant diseases over the years.
One of the most well-known is the PlantVillage dataset [1]. However, the images in
the PlantVillage dataset were taken in a controlled laboratory setting, making it eas-
ier for transfer-learned approaches to achieve high accuracy. In contrast, obtaining
laboratory-quality images in real-world scenarios is often impractical due to vari-
ous device and human limitations. Therefore, for this study, we chose the PlantDoc
dataset, which features real-life leaf images with high diversity [2].

The PlantDoc dataset is an object detection and image classification dataset
containing 2,548 images of 13 different plant species, each classified as either diseased
or healthy, resulting in a total of 27 classes. The dataset was originally published by
researchers at the Indian Institute of Technology. One example from each class has
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Figure 1.1 Image samples for each of the classes of PlantDoc dataset

Figure 1.2 10 diverse image samples from the ‘Apple Leaf’ class

been showcased in Figure 1.1. Table 1.1 shows distribution of classes in the PlantDoc
dataset i.e., number of sample images in each of the classes.

1.3.1.1 Challenges of the Dataset

The PlantDoc dataset is known for its diversity as each class contains a wide variety of
leaf images. The variations in the images make it difficult for the CNNs to generalize
their learned features to new, unseen data. Moreover, differentiating between leaves
of same class can also be challenging as the appearance of leaves can vary significantly
for a single plant. As a result, developing a model that can accurately classify the
images in the PlantDoc dataset is a challenging task. The diversity of the “Apple
Leaf” class has been illustrated in Figure 1.2.

1.3.1.2 Augmentation

In this study, three types of augmentation techniques were applied, including zoom
random function, rotation, and horizontal and vertical flip, with a probability of 70%.
Zoom random function was used with a maximum factor of 1.3 to randomly zoom
into the image. The maximum rotation applied was 10 degrees to the left or right.
Horizontal and vertical flip were used to create mirror images of the original image.
Only the training set underwent augmentation, generating 300 images per class. From
this, 240 images per class were selected to form the training set, while the remaining
60 images were placed in the validation set for each class.
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Table 1.1 Distribution of classes in the PlantDoc dataset i.e., number of sample images
in each of the classes

Serial Name of the Class Number of Samples
1. Apple Leaf 91
2. Apple Rust Leaf 89
3. Apple Scab Leaf 87
4. Bell Pepper Leaf 61
5. Bell Pepper Leaf Spot 71
6. Blueberry Leaf 116
7. Cherry Leaf 57
8. Corn Gray Leaf Spot 67
9. Corn Leaf Blight 192
10. Corn Rust Leaf 113
11. Grape Leaf 69
12. Grape Leaf Black Rot 64
13. Peach Leaf 112
14. Potato Leaf Early Blight 117
15. Potato Lead Late Blight 105
16. Raspberry Leaf 116
17. Soyabean Leaf 65
18. Squash Powdery Mildew Leaf 129
19. Strawberry Leaf 96
20. Tomato Early Blight Leaf 83
21. Tomato Leaf 62
22. Tomato Leaf Bacterial Spot 107
23. Tomato Leaf Late Blight 111
24. Tomato Leaf Mosaic Virus 54
25. Tomato Leaf Yellow Virus 75
26. Tomato Mold Leaf 91
27. Tomato Septoria Leaf Spot 148

1.3.2 Transfer Learning

Transfer learning is a machine learning technique where a pre-trained model is used
as a starting point for a new task. Transfer learning is accomplished by freezing the
pre-trained layers and adding a new classification layer to the network. The output
of the last convolutional layer is flattened and fed into the new layer. The weights of
the pre-trained layers are kept fixed, and only the weights of the new classification
layer are trained on the new dataset. This approach helps to overcome the overfitting
problem and can achieve high accuracy with less training data.

1.3.2.1 Justification of Utilizing Transfer Learning

In the context of plant disease recognition from leaf images, transfer learning allows
the use of pre-trained convolutional neural networks (CNNs) on large image datasets
like ImageNet to extract features from the images, instead of training a CNN from
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scratch on a small dataset. This approach is particularly useful in this case where the
dataset is both diverse and similar to the original dataset that the pre-trained model
was trained on.

1.3.3 Utilized Transfer Learned Models

This research utilized seven transfer learning models, including DenseNet201, Xcep-
tion, EfficentNetB6, InceptionResNetV2, InceptionV3, ResNet50, and MobileNetV2,
to improve the accuracy of plant disease recognition from leaf images.

1.3.3.1 DenseNet201

The architecture of DenseNet201 is based on the idea of dense connectivity, where
each layer is connected to every other layer in a feedforward fashion [3]. This con-
nectivity pattern enables feature reuse and promotes feature propagation throughout
the network. The equation for the output of a dense block in DenseNet201 can be
written as:

Hi = [x0, x1, · · · , xi−1] (1.1)

where xi is the output of the ith layer in the dense block and [·] denotes concatenation.
The equation for the output of the transition layer can be written as:

Hi+1 = BN(Conv(Pool(Hi))) (1.2)

where BN is batch normalization, Conv is convolution, Pool is pooling, and Hi+1 is
the output of the transition layer.

1.3.3.2 Xception

The core idea behind Xception is to split the depthwise separable convolution into
two separate layers: one for spatial convolution and another for channel convolution
[4]. The key equation for Xception is the depthwise separable convolution, which can
be defined as:

Yi,j,k =
∑
r,s

Xi+r,j+s,k · Kr,s (1.3)

where X is the input tensor, K is the kernel, and Y is the output tensor.

1.3.3.3 EfficentNetB6

EfficientNetB6 is designed to have an optimal balance between accuracy and compu-
tational efficiency, achieved by scaling the depth, width, and resolution of the network
in a principled manner [5]. The equations used in EfficientNetB6 are related to scaling
the network architecture:

d = αϕ, w = βϕ, r = γϕ (1.4)

where d is the depth, w is the width, r is the resolution, α, β, and γ are scaling coef-
ficients, and ϕ is the scaling parameter that controls the overall size of the network.
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1.3.3.4 InceptionResNetV2

The architecture of InceptionResNetV2 includes multiple Inception modules, which
are composed of parallel branches with different filter sizes, followed by a pooling layer
and concatenation of the output feature maps [6]. In addition, residual connections
are used to improve the flow of information between layers and mitigate the problem
of vanishing gradients. Suppose, the input to the network is x, and the output is y.
The residual connection for a layer i can be written as:

ri(x) = x − fi(x) (1.5)

where fi is the output of layer i. The Inception module output can be defined as:

Inception(x) = Concatenate([branch1(x), branch2(x), ..., branchn(x)]) (1.6)

where branchn is the output of the nth branch in the Inception module. The final
output of the network is obtained through a global average pooling layer followed by
a softmax activation function:

y = Softmax(AvgPool(x)) (1.7)

1.3.3.5 InceptionV3

InceptionV3 uses a series of convolutional layers with varying filter sizes to capture
both fine-grained and high-level features in the image [7]. The equation for the in-
ception module is Inception(x) = concat(conv(x, 1 × 1), conv(x, 3 × 3), conv(x, 5 ×
5), maxpool(x, 3 × 3, stride = 1, padding = 1)), where x is the input to the module,
conv(x, k × k) is a convolutional layer with kernel size k × k, and maxpool(x, k ×
k, stride, padding) is a max pooling layer with kernel size k × k, stride stride, and
padding padding. The concatenated output is then passed through a nonlinearity,
such as a rectified linear unit (ReLU), before being used in subsequent layers of the
network.

1.3.3.6 ResNet50

ResNet50 is a variant of ResNet that consists of 50 layers, and it uses skip connections
to enable the training of very deep networks [8]. The residual block of ResNet50 can
be represented mathematically as:

xl = σ (xl−1 + F (xl−1; Wl)) (1.8)

where σ is the ReLU activation function, xl−1 is the input to the l-th layer, F is the
residual function that computes the layer’s output, Wl are the layer’s weights, and
xl is the output of the layer. The skip connection in ResNet50 is represented by the
addition of xl−1 and F(xl−1; Wl), which allows the gradients to flow directly through
the network.



Large Ensemble of Transfer-Learned Models for Plant Disease Recognition ■ 9

1.3.3.7 MobileNetV2

MobileNetV2 is a lightweight deep neural network architecture designed for efficient
mobile and embedded vision applications [9]. The depthwise convolution applies a
single filter to each input channel separately, and the pointwise convolution combines
the outputs of the depthwise convolution with a linear transformation:

y = PW (DW (x)) (1.9)

where x is the input feature map, DW is the depthwise convolution with a depthwise
filter of size K × K, PW is the pointwise convolution with 1 × 1 filters, and y is the
output feature map.

1.3.3.8 Justification of Choosing Models

The selection of these seven models for plant disease recognition from leaf images
is justified based on their strengths in computer vision tasks and their ability to
extract relevant features from the input images. DenseNet201 is a deep neural network
that excels at learning feature representations in densely connected blocks, making
it highly effective for image classification. Xception is another deep neural network
that uses depthwise separable convolutions to capture spatial dependencies between
features, which leads to better accuracy and fewer parameters.

EfficientNetB6 is a scalable convolutional neural network that achieves state-
of-the-art accuracy with fewer parameters and less computational cost than other
models. InceptionResNetV2 combines the strength of both Inception and ResNet ar-
chitectures by using residual connections and multiple parallel convolutional layers.
InceptionV3 is known for its effectiveness in image classification and feature extrac-
tion, as it uses a combination of convolutional layers with different filter sizes to
capture different levels of detail. ResNet50 is a widely used neural network that uses
residual connections to overcome the problem of vanishing gradients and improve
accuracy in deep networks. MobileNetV2 is a lightweight neural network that uses
depthwise separable convolutions to achieve high accuracy with fewer parameters and
lower computational cost than other models.

Each of these models has different strengths in feature extraction and image clas-
sification, and by using them in combination, we were able to achieve high accuracy
in plant disease recognition from leaf images. The features extracted by each model
were combined using an ensembled approach for final classification. The use of these
models and their extracted features highlights the importance of selecting appropriate
models and feature extraction techniques for image recognition tasks.

1.3.4 Proposed Ensembling Method

Ensemble methods combine multiple models to achieve better accuracy and robust-
ness in prediction. SoftMax Averaging is a popular ensemble method that combines
the SoftMax outputs of multiple models to make predictions. In this study, the Soft-
Max Averaging ensemble method has been used to combine the predictions of seven
different models, namely DenseNet201, Xception, EfficentNetB6, InceptionResNetV2,
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Figure 1.3 Proposed ensembling method based on SoftMax averaging

InceptionV3, ResNet50, and MobileNetV2. Each of these models has its own strengths
and weaknesses, and combining them allows for a more robust prediction. The Soft-
Max Averaging method works by taking the SoftMax output of each model for each
image and averaging them across all the models to get the final prediction. This ap-
proach is particularly effective when the models have different architectures, as is the
case in this study.

The SoftMax Averaging ensemble combines the predictions from all models by
taking the average of the predicted probabilities. The ensembled prediction probabil-
ity p̂i for image xi can be calculated as:

p̂i = 1
N

N∑
j=1

p̂i,j (1.10)

where N is the total number of models used in the ensemble. Finally, the ensembled
prediction ŷi for image xi can be obtained by selecting the class with the highest
probability among all classes. Figure 1.3 showcases the proposed ensembling method
based on SoftMax averaging.

1.3.4.1 Justification of Proposed Ensembled Method

The ensembled method based on SoftMax averaging offers several justifications for
its effectiveness. Firstly, it improves generalization by combining predictions from
multiple models, resulting in improved accuracy and robustness on unseen data. Sec-
ondly, it helps reduce overfitting by averaging predictions of different models, thereby
decreasing the impact of overfitting. Thirdly, it leverages the diversity in model pre-
dictions, which captures a wider range of patterns in the data, leading to a more
accurate and robust model. Fourthly, this approach is particularly effective for com-
plex problems, where a single model may struggle to capture all the nuances in the
data. Finally, the SoftMax function is used to convert model outputs into proba-
bilities, making ensembled predictions easily interpretable and useful for informed
decision-making.
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Table 1.2 Class-wise accuracy, precision, recall, f1-score and support for the considered
27 classes of the PlantDoc dataset

Class Accuracy Precision Recall F1-Score Support
0 1.00 1.00 1.00 1.00 18
1 1.00 1.00 1.00 1.00 19
2 1.00 1.00 1.00 1.00 18
3 1.00 1.00 1.00 1.00 13
4 1.00 1.00 1.00 1.00 15
5 1.00 1.00 1.00 1.00 24
6 1.00 1.00 1.00 1.00 12
7 1.00 0.88 1.00 0.93 14
8 0.95 1.00 0.95 0.97 39
9 1.00 1.00 1.00 1.00 23
10 1.00 1.00 1.00 1.00 23
11 1.00 0.92 1.00 0.96 24
12 1.00 0.95 1.00 0.98 21
13 1.00 1.00 1.00 1.00 24
14 1.00 1.00 1.00 1.00 13
15 1.00 1.00 1.00 1.00 26
16 1.00 1.00 1.00 1.00 20
17 1.00 0.94 1.00 0.97 17
18 0.97 1.00 0.97 0.98 30
19 1.00 1.00 1.00 1.00 13
20 1.00 1.00 1.00 1.00 22
21 0.87 1.00 0.87 0.93 23
22 1.00 1.00 1.00 1.00 11
23 0.93 1.00 0.93 0.97 15
24 1.00 0.95 1.00 0.97 19
25 1.00 1.00 1.00 1.00 14
26 1.00 1.00 1.00 1.00 13

Table 1.3 Comparison among the performance obtained by previous researches and
the proposed ensembled model for the PlantDoc dataset

Methods / Approaches Obtained Accuracy
Xception [14] 81.53%

DenseNet121 [20] 86.36%
Snapshot Ensemble Technique of 4 CNNs [16] 69.51%

Proposed Ensemble (SoftMax Averaging) of 7 CNNs 98.66%

1.4 EXPERIMENTAL ANALYSIS

Initially, the PlantDoc dataset was divided into two sets: the training set (80%) and
the test set (20%). After the augmentation process was completed, the augmented
data was further divided into two sets: the validation set and the train set.



12 ■ Taylor and Francis Book Chapter

Figure 1.4 Training vs. Validation accuracy curve for PlantDoc dataset (DenseNet201)

Figure 1.5 Training vs. Validation loss curve for PlantDoc dataset (DenseNet201)

1.4.1 Experimental Settings

The experimental setup used for the study involved training the model for 25 epochs
with a batch size of 24. The learning rate was set to 0.000001, and the optimizer
used was Adam. Accuracy matrices were used to evaluate the performance of the
model, and the loss function used during training was Categorical Crossentropy. The
experimental setup was designed to ensure that the model was trained effectively and
that its performance was accurately assessed using appropriate evaluation metrics.

1.4.2 Obtained Results

After applying the ensembled approach combining 7 CNNs by SoftMax averaging
technique, 98.66% accuracy was obtained. Among 523 samples of the test set, 516
samples were correctly classified and 7 samples were misclassified overall. Table 1.2
shows class-wise accuracy, precision, recall, F1-score, and support for the 27 classes
of the PlantDoc dataset. Each row represents a particular class, and the columns
show various evaluation metrics. For each class, the accuracy is 1.00, indicating that
all samples belonging to that class were correctly classified. The precision and recall
values are also 1.00 for most classes, indicating that the model correctly predicted
all samples belonging to that class and did not misclassify any samples of other
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Figure 1.6 Confusion matrix for the proposed ensembled method based on SoftMax
averaging

classes as belonging to that class. The F1-score is also 1.00 for most classes, which
is the harmonic mean of precision and recall. However, a few classes have slightly
lower values for precision, recall, and F1-score. For example, class 7 has a precision
value of 0.88, indicating that a small fraction of samples belonging to this class were
misclassified as belonging to other classes. Similarly, class 21 has a recall value of 0.87,
indicating that a small fraction of samples belonging to this class were misclassified as
belonging to other classes. Figure 1.4 and Figure 1.5 showcases the train vs. validation
accuracy and loss curves for DenseNet201 which indicates that there is no overfitting.
The obtained curves for other models were similar also. Figure 1.6 illustrates the
confusion matrix for the proposed ensembled method.

1.4.3 Comparison and Discussion

In this study, the proposed work addresses the challenge of plant disease classifi-
cation by utilizing an ensemble CNN technique, which combines seven pre-trained
CNN models trained on the PlantDoc dataset. The SoftMax Averaging ensemble tech-
nique aims to achieve superior plant disease classification performance, resulting in
an obtained accuracy of 98.66%. In comparison to previous researches, the proposed
work significantly outperforms them, demonstrating its ability to enhance classifi-
cation performance. Table 1.3 showcases the comparison among previous works and
the proposed ensembled approach. Xception achieves an accuracy of 81.53%, which
is considerably lower than the proposed ensemble approach. DenseNet121, on the
other hand, achieves a higher accuracy of 86.36%, but still falls short in comparison
to the proposed approach. The Snapshot Ensemble Technique of 4 CNNs achieves
an accuracy of 69.51%, which is considerably lower than all the other approaches.
The superior performance of the proposed ensemble approach can be attributed to
the combination of multiple pre-trained CNN models, which allows for a more di-
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verse range of feature extraction and improved classification accuracy. Furthermore,
the SoftMax Averaging ensemble technique enables the models to complement each
other’s strengths, leading to a more robust and accurate model.

1.5 CONCLUSION

In conclusion, plant diseases can have devastating consequences for agricultural pro-
duction, resulting in significant yield losses and reduced crop quality. Traditional
methods for detecting and controlling these diseases are often time-consuming and
inefficient. However, recent advancements in deep learning and computer vision tech-
nologies have paved the way for the development of more effective and efficient disease
diagnosis methods. This study addresses the challenge of plant disease classification
by employing an ensemble CNN technique, utilizing seven pre-trained CNN models
trained on the PlantDoc dataset. The proposed approach significantly outperforms
previous research, achieving an accuracy of 98.66%. The SoftMax Averaging ensemble
technique and the combination of multiple pre-trained CNN models are the key fac-
tors that contribute to the proposed approach’s superior performance. In the future,
the aim will be to focus on mobile computing so that recognition can be performed
in low-cost environment.
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