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Abstract—Although extensive research has been conducted
on leukemia, the disease still accounts for more than 350,000
fatalities annually. Automated Leukemia diagnosis may alter
the situation because actions can be taken immediately; as a
result, accurate detection of Leukemia has been a subject of
interest for researchers. As statistics grow and expand, the need
for precise leukemia identification continues to increase. In this
study, we investigated a dataset of leukemia that used the WHO
classification scheme. We developed a modified DenseNet201
design that achieved an overall accuracy of 99.69% without
relying on data augmentation. Additionally, we identified and
validated key features for leukemia classification by utilizing
three feature extraction approaches (i.e., hu moments, haralick
texture and parameter-free threshold adjacency statistics) and
several machine learning classifiers (i.e., Gaussian Process, Sup-
port Vector Machine, K-Nearest Neighbor or KNN, Extra Trees
Classifier, and Logistic regression) that outperformed earlier
feature extraction-based techniques.

Index Terms—Leukemia Sub-types Classification, Transfer
Learning, Hu Moments, Haralick Texture, Threshold Adjacency
Statistics, Gaussian Process Classifier

I. INTRODUCTION

Leukemia is a fatal blood malignancy characterized by
abnormal and uncontrolled leukocyte proliferation. The gen-
eration of such a vast number of faulty leukemia cells affects
the blood and restricts the ability of the bone marrow to
manufacture platelets and erythrocytes [1], [2]. Inadequate
levels of healthy blood cells released into the bloodstream
have negative effects on blood coagulation, the ability of the
immune system to fight infections, and the amount of oxygen
delivered to the organs [2]. Additionally, these cancerous cells
can harm other organs, including the liver, kidney, spleen,
brain, and so forth, through the bloodstream, causing the
emergence of other fatal cancers. [1]. The Surveillance, Epi-
demiology, and End Results (SEER) Program predicts 60,650
new cases of leukemia in the United States in 2022 [3]. Acute
Lymphoblastic Leukemia, or ALL, accounts for 75 percent of

all leukemia cases in children, making it the most widespread
type of cancer in this age group [4]. It is found in adults as
well. In general, adults account for 4 out of every 10 instances
of ALL [5]. The beginning of the treatment process and,
consequently, the patient’s survival depend on an early and
prompt diagnosis of ALL [1]. Currently, microscopic analysis
of the peripheral blood smear (PBS) is the most significant
diagnostic technique for initial ALL screening. However, it
might be difficult to distinguish between normal cells and
young leukemic blasts under the microscope as the two cells
are identical morphologically. As a result, findings from the
manual examination of the slides are frequently erratic and
subjective. Therefore, we require automated diagnosis systems
for ALL screenings that are fast, reliable, and affordable
[5]. Additionally, if we’re able to identify and distinguish
the fundamental aspects of this condition, a more successful
course of treatment may be developed. By harnessing the
features of blood smear images, we can design more effective
drugs. Once diagnosed, the disease can be cured with the right
medication.

Numerous studies have employed various machine and deep
learning-based methods to address the issue of automated
leukemia identification using blood smear images. Hegde et
al. [6] combined the Support Vector Machine (SVM) classifier
with an Artificial Neural Network (ANN) to classify normal
and leukemia cells, obtaining overall 98.8% classification
accuracy. Abdeldaim et al. [7] extracted and normalized shape,
texture, and color features. After that, the KNN classifier
produced the best result, with an accuracy of 96.01%. Das
et al. used a modified ResNet architecture to extract features.
Finally, they used SVM, Logistic Regression, and Random
Forest for ALL classification, where they gained 96.15%
accuracy for all three approaches[8]. Clinton Jr et al. pro-
posed a neural network with depthwise separable convolutions
(Xception) to detect ALL and achieved 99% and 91% accuracy
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on the training and testing sets based on the images from
Cancer Imaging Archive [5]. Khandekar et al. implemented the
Object Detection algorithm You Only Look Once (YOLOv4)
for ALL identification and classification attaining an 95.57%
mAP (Mean Average Precision) for the ALL-IDB1 dataset and
98.57% mAP for the C-NMC-2019 dataset [9]. Ghaderzadeh
et al. presented a Convolutional Neural Network (CNN)-based
model to distinguish between cases of ALL and hematogones
and to ultimately identify the ALL subtypes. They tested 10
well-known CNN architectures for feature extraction and out
of these, DenseNet201 obtained the best accuracy of 99.85%.
However, their research performed poorly on EfficientNet,
achieving 28.22% accuracy [1].

Upon reviewing the related literature, we found that the
vast majority of them used the French–American–British
(FAB) classification system to categorize ALL cancer cases.
However, hematologists and oncologists have recently argued
that the World Health Organization (WHO) methodology
is preferable to FAB, as the WHO classification has more
precise definitions for the subgroups and can be used to more
accurately identify the various forms of leukemia. We also
observed that the dataset used in this study has been the subject
of very little research [1]. Furthermore, the majority of the
aforementioned research employed data augmentation in the
preprocessing stages, which can have adverse effects on the
classifier.

This paper proposes two classification approaches that are
based on machine learning and deep learning algorithms.
Using publicly available ALL datasets we developed and
optimized three transfer learning-based CNN models that
achieved a high level of accuracy compared to previous
works. Moreover, to find and evaluate the important features
of PBS images in ALL classification, we extracted various
features and employed several ML classifiers, which achieved
similar results, proving the efficacy of the extracted features
in leukemia classification.

II. MATERIALS AND METHODS

A. Dataset Description

We analyzed a publicly available ALL dataset that is cat-
egorized according to WHO [10]. The bone marrow labora-
tory at Taleqani Hospital, Tehran created the dataset images.
The precise classification of these cells was carried out by
an expert. It contained 3256 PBS images from 89 patients
suspected of having ALL, having 25 healthy people with a
benign assessment (hematogones) and 64 patients who had
a confirmed diagnosis of one of the subtypes of ALL. The
dataset consisted of four classes: Benign, Early Pre-B, Pre-
B, and Pro-B. Non-leukemic cells made up the first category,
whereas ALL cases made up the remaining ones [1].

B. Transfer Learning

When performing classification tasks with a small dataset,
transfer learning is an effective strategy for overcoming over-
fitting complications and delivering notable results. Transfer
learning is the practice of applying weights that have already

been learnt to resolve problems that are entirely different
yet nevertheless related. For instance, there are 1,000 distinct
groups in the ImageNet dataset. Some of these groupings are
quite similar to one another, while others are wholly distinct.
The ImageNet challenge weights will therefore be a good place
to start for any recognition that involves similar or dissimilar
groupings.

In this paper, we have used three transfer learning-based
CNN architectures- DenseNet201, EfficientNetB6, and Xcep-
tion. Huang et al. presented DenseNet, which is renowned for
doing exceptionally well with object recognition benchmark
datasets like CIFAR-100 and ImageNet. The DenseNet ar-
chitecture employs a straightforward connectivity pattern that
links all layers directly with each other in a sequential manner,
enhancing the flow of information across the network’s layers
[11]. The acronym for the EfficientNet family of CNNs is
EfficientNetB0-EfficientNetBX, where X represents the net-
work’s parameter count; the higher the number, the larger the
network’s parameter count. Compared to earlier systems of
comparable complexity, smaller EffficientNet conducts catego-
rization more accurately [12]. The Xception architecture is a
straightforward arrangement of residually connected depthwise
separable convolution layers. Because of this, the architecture
is incredibly simple to define and change [13].

C. Utilized Feature Extraction Techniques

Machine learning classifiers rely on selective image feature
extraction. The feature selection techniques considered in this
research are Hu Moments, Haralick Texture and Parameter-
Free Threshold Adjacency Statistics. These specific feature
extractors were considered as they have the capacity to gather
pertinent information about the shape, texture, and structure
of objects in an image.

1) Hu Moments: A key component in image classification
is the image shape feature. Effective and efficient shape
descriptors are the core elements of the image representation.
Moments are shape descriptors commonly used to characterize
image shapes. For a 2D image I of size M×N , where f(x, y)
denotes the gray level at pixel (x, y), the raw moment of order
(p+ q) is:

mpq =

M−1∑
x=0

N−1∑
y=0

xpyqf(x, y) (1)

In practical applications, the raw moment is typically re-
placed by the central moments. It is defined as:

δpq =

M−1∑
x=0

N−1∑
y=0

(x− x̄)p(y − ȳ)qf(x, y) (2)

x̄ = m10/m00, ȳ = m01/m00 (3)

Hu derived the Hu Moment Invariants (HMI) by apply-
ing the algebraic invariant theory to the normalized central
moment, and generated 7 rotation and translation invariant
moments that are used to describe the shape information [14].



TABLE I: Haralick features used for classification

Haralick Features

Angular Second Moment Info. Measures of Correlation 2
Contrast Inverse Difference Moment

Correlation Sum Average
Difference Entropy Sum Entropy
Difference Variance Sum of Squares: Variance

Entropy Sum Variance
Info. Measures of Correlation 1 -

2) Haralick Texture: Haralick is a texture feature descriptor
that is used extensively in image classification due to its
simplicity and straightforward interpretations. Haralick texture
features are statistical constructs designed to highlight partic-
ular texture characteristics. These features include 14 statistics
obtained from the Grey Level Co-occurrence Matrix (GLCM)
[15]. In our research, only the first 13 features were utilized.
The last (F14) feature was not considered due to computational
instability. Table I states the proposed Haralick features for
describing texture in PBS images. The computation can be
divided into two steps: building the co-occurrence matrices
and then calculating the 13 texture features based on them.

3) Parameter-Free Threshold Adjacency Statistics: Thresh-
old adjacency statistics is a straightforward and quick mor-
phological metric that was introduced [16] for classifying cell
phenotype images. We chose the Parameter-Free Threshold
Adjacency Statistics (PFTAS), the parameter-free variant of
TAS, as PBS images and these images have certain similarities.
In multiple-threshold binarized images, PFTAS works on the
premise of accumulating pixels in the histogram bins based
on the quantity of white neighbors. Three distinct threshold
ranges are used to binarize the original image: [µ+σ, µ−σ],
[µ − σ, 255], and [µ, 255], with µ being an Otsu-defined
threshold and σ being the standard deviation of the pixels
above the threshold. A normalized histogram of pixels with i
(i ranging from 0 to 8) white pixels as neighbors is calculated
for each binarized image. For each of the three RGB channels,
the three histograms are combined to create a 27-dimensional
feature vector, resulting in an 81-dimensional feature vector.
Finally, a 162-dimensional feature vector is created by con-
catenating this vector with its bitwise negated counterpart.
Threshold adjacency statistics do not require individual cell
cropping of images. In comparison to other frequently used
statistics, they can be computed an order of magnitude faster
and still produce classification accuracy that is equivalent or
superior.

D. Utilized Machine Learning Classifiers

In this section, the five classifiers—Gaussian Process, Sup-
port Vector Machine, K-Nearest Neighbor, Extra Trees Clas-
sifier and Logistic Regression—have been discussed. The five
classifiers were selected due to their wide use and established
status in machine learning. Logistic Regression is simple,
flexible and computationally efficient. SVM is a powerful
algorithm that can handle both linear and non-linear data.

KNN is simple to implement and offers high generalization
performance, while Gaussian Process is a probabilistic model
that is useful for modeling complex and uncertain relationships
between variables. Finally, Extra Trees Classifier is robust,
combining multiple decision trees. These classifiers provide a
diverse set of methods for solving a variety of classification
problems, making them a good choice for comprehensive
comparison and evaluation.

1) Logistic Regression: The classification function is gen-
erated from a class, and the model is a single multinomial
logistic regression model with a single estimator. In a particu-
lar manner, logistic regression typically identifies the location
of the boundaries between the classes as well as how far away
from the boundaries the class probabilities are. Based on the
values of the input variables, it provides the binomial result,
which indicates the likelihood that an event will occur or not
(in terms of 0 and 1). It generates more accurate, precise
predictions [17].

2) Support Vector Machine: SVMs in machine learning
look at the data used for regression and classification analyses
using supervised learning models and associated learning
methods. By implicitly transforming their inputs into high-
dimensional feature spaces, SVMs can successfully do non-
linear classification in addition to linear classification. The
kernel trick is the name of this tactic. It essentially draws
lines between the classes. In order to reduce classification
error, the margins are designed to have the minimum possible
distance between them and the classes [18]. If the proper
kernel function can be identified, it can manage complex
functions in addition to structured and semi-structured data.
The generalization approach used by SVM lowers the risk of
overfitting. Furthermore, it is scalable with high-dimensional
data [17].

3) K-Nearest Neighbor: The sample data point that is
provided to the KNN Algorithm is classified using a database
that comprises data points sorted into various classes. The
algorithm locates the k closest neighbors in the training dataset
from the query instance for categorizing a new dataset. The
algorithm will then forecast the query instance using the
consensus of the k nearest neighbors [19]. KNN is referred
to as non-parametric since it makes no assumptions about the
distribution of the underlying data [17].

4) Gaussian Process: A posterior predictive distribution is
computed for fresh data using the Gaussian process, a kernel-
based fully Bayesian regression procedure. The Gaussian
process is a multivariate Gaussian extension that, thanks to
its analytical features, may be used to model groups of real-
valued variables. A multivariate Gaussian distribution-based
sub-collection of random variables is the basis of a stochastic
process known as a Gaussian process. The Gaussian process
makes use of the kernel as a covariance function to model
distinct distributions in terms of mean square derivatives for
a range of different types of data. Since it enables evaluating
prediction uncertainty owing to errors in parameter estimates
as well as intrinsic noise in the problem, the Gaussian process
is an appealing model for using in regression problems [20].



Fig. 1: Training and validation accuracy of proposed
DenseNet201 architecture

Fig. 2: Training and validation loss of proposed DenseNet201
architecture

5) Extra Trees Classifier: The Extra Trees classifier is a
method that creates a collection of unpruned decision trees
using the conventional top-down approach. The process in-
cludes heavily randomizing the selection of both the attribute
and the cut-point during node splitting. In the worst case, it
generates completely random trees that are unrelated to the
output values in the training sample. This is different from
other tree-based ensemble algorithms in two ways: the trees
are constructed using the whole training sample and nodes are
split by randomly choosing cut points. The projections from
all the trees are combined using a majority vote to get the final
projection [21].

III. EXPERIMENTAL ANALYSIS

A. Preprocessing

Since the CNN is a competent tool for separating valuable
information from raw photos, a rigorous preprocessing of the
images was omitted when feeding them to the network. How-
ever, some preprocessing were required. The supplied images
were in various aspects, therefore they were transformed to
224x224x3. These reshaped images were also used for the

Fig. 3: Model evaluation confusion matrix for test data

ML approach. In this case, the colormap of the images was
then converted from RGB to Grayscale. No data augmentation
was performed in either approach.

B. Design of Experiment

1) Transfer Learning: With a batch size of 24, we trained
the model for 25 epochs since after that, the validation loss
stayed essentially constant for the remaining epochs. For
optimizing the error function, we utilized Adam optimizer
[22] using a 0.00001 learning rate. Next, for the error or loss
function, a categorical cross-entropy method was used. The
dropout technique was used to circumvent overfitting.

2) Machine Learning: Three feature extraction methods
were used to retrieve a total of 113 features for each image. By
eliminating the mean and scaling to unit variance, the features
were normalized. These features and the corresponding labels
were used to train the classifiers.

C. Result Analysis

After the preprocessing steps, the dataset [10] was par-
titioned into train, validation, and test sets for our transfer
learning approach. 60% data was set aside for training, while
20% and rest 20% was used for validation and testing re-
spectively. Later, the proposed architectures—DenseNet201,
EfficientNetB6, and Xception were employed. Here, the trans-
fer learning-based CNN models utilized the original images
in the dataset. The training and validation accuracy of our
design is shown in Figure-1, and the training and validation
loss is shown in Figure-2. The performance of each subtype of
leukemia is reported in Table II, including accuracy, precision,
recall, f1-score, and support. For the Leukemia dataset[10], our
suggested design generated a best overall accuracy of 99.69%
using the DenseNet201 architecture. For the ML classifiers,
80% of the data was considered for training and 20% for
testing purposes. The segmented images in the dataset [10]
were used in this approach. After the preprocessing steps, the
data was fed into the three feature extraction algorithms: Hu
Moments, Haralick Texture, and PFTAS. For each image in
the train and test datasets, these algorithms produced a total of
113 features, which were then applied to train and evaluate the
classifiers. Here, we selected five classifiers: Support Vector
Machine, Gaussian Process, Extra Trees Classifier, K-Nearest
Neighbor and Logistic regression. Gaussian Process obtained
a best overall accuracy of 99.23%. Table III summarizes the
outcomes that were attained. In order to achieve the best



TABLE II: Class-wise evaluation metrics (accuracy, precision, recall, f1-score, and support) for each class using transfer learning
with a scale of 1.00 for 100% and 0.00 for 0%

Classes Class-wise Accuracy Class-wise Precision Class-wise Recall Class-wise F1-Score Class-wise Support

Proposed Modified DenseNet201

Benign 0.990 1.00 0.99 1.00 102
Early 1.000 0.99 1.00 1.00 197
Pre-B 0.995 1.00 0.99 1.00 194
Pro-B 1.000 0.99 1.00 1.00 162

Proposed Modified EfficientNetB6

Benign 0.990 0.98 0.99 0.99 102
Early 0.995 0.99 0.99 0.99 197
Pre-B 0.989 1.00 0.99 0.99 194
Pro-B 0.994 0.99 0.99 0.99 162

Proposed Modified Xception

Benign 0.990 0.97 0.99 0.98 102
Early 0.995 0.99 0.99 0.99 197
Pre-B 0.985 1.00 0.99 0.99 194
Pro-B 0.994 0.99 0.99 0.99 162

TABLE III: Class-wise evaluation metrics (accuracy, precision, recall, f1-score, and support) for each class using ML classifiers
with a scale of 1.00 for 100% and 0.00 for 0%

Classes Class-wise Accuracy Class-wise Precision Class-wise Recall Class-wise F1-Score Class-wise Support

Proposed Gaussian Process

Benign 0.990 0.97 0.99 0.98 101
Early 0.989 1.00 0.99 0.99 197
Pre-B 0.995 0.99 0.99 0.99 193
Pro-B 0.994 0.99 0.99 0.99 161

Proposed Support Vector Machine

Benign 1.000 0.95 1.00 0.98 101
Early 0.985 1.00 0.98 0.99 197
Pre-B 0.989 0.99 0.99 0.99 193
Pro-B 0.981 0.99 0.98 0.98 161

Proposed Extra Trees Classifier

Benign 0.950 0.88 0.95 0.91 101
Early 0.944 0.97 0.94 0.96 197
Pre-B 0.979 0.99 0.98 0.98 193
Pro-B 0.994 0.99 0.99 0.99 161

Proposed K-Nearest Neighbor

Benign 0.891 0.91 0.89 0.90 101
Early 0.959 0.95 0.96 0.95 197
Pre-B 0.979 0.98 0.98 0.98 193
Pro-B 0.994 0.99 0.99 0.99 161

Proposed Logistic regression

Benign 0.911 0.88 0.91 0.90 101
Early 0.959 0.96 0.96 0.96 197
Pre-B 0.984 0.99 0.98 0.99 193
Pro-B 0.981 0.99 0.98 0.99 161

results, the parameter values for SVM were tuned using the
well-known Grid Search method. Figure 3 represents the
confusion matrices from the proposed DenseNet201 model and
the Gaussian Process classifier. The comparison between our
suggested techniques and earlier efforts on the same dataset
is shown in Table IV in terms of overall accuracy. It can be

seen that even though [1] performed better with DenseNet201,
their other models did not do so well. This may be accredited
to a lack of optimization which we addressed in our work
and were able to achieve a steady performance throughout
both our methods. A comparison between previous Leukemia
classification using ML classifiers and our research is shown



TABLE IV: Comparison of notable previous works with our
proposal on the same dataset

Approaches Augmentation? Overall Accuracy

DenseNet201 [1] Yes 99.85%
VGG-16 [1] Yes 98.01%
Xception [1] Yes 96.70%

MobileNetV3 [1] Yes 50.15%
EfficientNet [1] Yes 28.22%

Proposed Modified No 99.69%
DenseNet201

Proposed Gaussian No 99.23%
Process Classifier

TABLE V: Comparison between proposed classifier and ex-
isting work incorporating ML classifiers

Dataset Used Classifiers Overall Accuracy

Private Dataset SVN with ANN [6] 98.80%
ALL-IDB2 KNN [7] 96.01%
ALL-IDB2 SVM, Random Forest, 96.15%

Logistic Regression [8]
ALL dataset Proposed Gaussian 99.23%

Process Classifier

in Table V . Our suggested methods have, as can be observed,
markedly surpassed the earlier efforts.

IV. CONCLUSION

In this study, we examined a dataset of leukemia subtypes.
Among the most prevalent cancers in the globe, leukemia
claims many lives every year. Here, we devised a method
for precisely predicting Leukemia subtypes utilizing CNN
architectures and the transfer learning principle. Through opti-
mization, our models were able to consistently achieve a high
level of accuracy surpassing earlier research. Furthermore, in
contrast to the previous work on the dataset [1], these results
were obtained without the aid of data augmentation. CNNs,
however, are often perceived as a “black box” in that we are
unable to evaluate a trained model to determine which input
features were most significant. Consequently, we attempted to
pinpoint the crucial elements in the classification of leukemia
using feature extraction techniques. The effectiveness of our
acquired features was demonstrated by ML classifiers that
performed similar to the CNN models and outperformed
earlier feature extraction-based methods in terms of accuracy.
Our findings, we trust, can aid in the field of Leukemia
diagnosis. Our goal in the future is to conduct research with
bigger datasets, discover other feature extraction techniques
and design efficient models for leukemia segmentation.
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