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ABSTRACT: Recent advancements in deep learning have driven significant progress in medical
imaging, notably in automated leukemia classification. However, deploying state-of-the-art models in
real-world applications can be prohibitive due to their computational and memory overhead. In this
context, this study introduces a multi-teacher knowledge distillation framework, complemented by
a learned gating mechanism. This gate is designed to dynamically allocate weights to the teacher
models during the distillation process, promoting accurate predictions in the student model. Swin
Transformer and ConvNext models serve as the chosen teachers, with the intention to harness both
the robust representational capabilities of transformers and the locality-preserving attributes of
convolutions. Employing this strategy to guide a lightweight MobileNetV2 student model, an evident
improvement in performance was achieved over conventional training techniques.

1 Introduction

The classification of Acute Lymphoblastic Leukemia (ALL) through deep learning has been ex-
tensively studied, with models like Zakir et al.’s attention-based CNN using VGG16 and ECA to
emphasize the semantic features of ALL cells [7], and Niranjana et al.’s specialized ALLNET register-
ing 95.54% accuracy on the C-NMC-2019 dataset [6]. Efforts towards lightweight architectures have
also been noted; Krzysztof et al. combined MobileNetV2 with traditional classifiers like DT and RF
to obtain a 97.4% accuracy score on the ALL-IDB dataset [5]. Similarly, Faro et al. integrated neural
networks with classifiers like KNN and SVM, aiming at computational efficiency [1]. In the domain
of knowledge distillation, Genovese et al. proposed DL4ALL, a multi-task model utilizing various
cross-dataset transfer learning techniques, with the ’greedy’ variant showing the most promise [2].

Despite these strides, discernible gaps remain in the KD literature for leukemia classification, opening
avenues for further research. Considering this, the objectives for this exploration are as follows:

• Robust KD Framework: I propose a knowledge distillation approach that:
– Moves beyond the limitations inherent in single-teacher models.
– Incorporates a fluid, trainable gating mechanism to make the most of the knowledge

from diverse teachers.
• Versatile Model Design: Both teacher models, with convolutional and transformer-centric

feature extractors, outpace the majority of current literature, underscoring the efficacy of the
model architecture refined through hyperparameter tuning and optimization.

2 Materials and Methods

2.1 Data Collection & Preprocessing

From the C-NMC 2019 dataset [3], I sourced 10,661 images, comprising 7,272 blast cells and
3,389 healthy cells. These were divided into training, validation, and test sets in a 70:15:15 ratio.
Augmentation methods used were random flips, rotation, and conditional zoom and crop.

2.2 Model Architecture

The ConvNext and Swin Transformer models [4], given their established efficiency, were employed
as teacher models. The crafted model architecture, depicted in Fig. 1, incorporates Batch Normal-
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Figure 1: Model Architecure Figure 2: Gating Network

Table 1: Key Configurations and Corresponding Values for Experiments
Configuration Teacher Models KD Student Model

Image Size 224x224 224x224
Batch Size 64 64
Training Epoch 150 650
Optimizer RAdam + Lookahead Adam
Kernel Regularizer L2 (0.016) L2 (0.016)
Activity Regularizer L1 (0.006) L1 (0.006)
Bias Regularizer L1 (0.006) L1 (0.006)

ization and Regularization layers to address the dataset’s class imbalance and mitigate overfitting.
Additionally, the gating network, illustrated in Fig. 2, is purposefully lightweight, ensuring seamless
integration without overshadowing the compact MobileNetV2 student model.

2.3 Training Configuration

In addition to network design, the training process significantly influences performance. Table 1 lists
key parameters used.

2.4 Knowledge Distillation

The core algorithm of the proposed KD approach is presented in Algorithm 1.

Algorithm 1 Pseudocode Describing the Proposed Multi Teacher KD Learning Procedure

1: procedure TRAIN_STEP(data)
2: x, y ← data
3: student_predictions← student(x, training = True)
4: student_loss← student_loss_function(y, student_predictions)
5: for each teacher in teachers do
6: teacher_predictions← teacher(x, training = False)
7: end for
8: gating_weights← gating_network(x, training = True)
9: weighted_teacher_predictions = 0

10: for i, teacher_prediction in teacher_predictions do
11: weighted_teacher_predictions += gating_weights[:, i : i + 1] ×

teacher_prediction
12: end for
13: distillation_loss← distillation_loss_function(weighted_teacher_predictions,

student_predictions)
14: // Alpha Factor to Weight the Student and Distillation Loss
15: total_loss← α× distillation_loss+ (1− α)× student_loss
16: // Gradient Calculation and Weight Update of Student & Gating Model
17: trainable_vars ← student.trainable_variables +

gating_network.trainable_variables
18: gradients← gradient(total_loss, trainable_vars)
19: optimizer.apply_gradients(gradients, trainable_vars)
20: end procedure
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3 Preliminary Results

Experiments reveal improved classification performance in the student model over its standalone
counterpart, as shown in Table 2. Both the teacher and student models demonstrate results comparable
to, or even surpassing, current state-of-the-art and mobile-focused studies.

Table 2: Preliminary Results (Provided Precision, Recall, and F1-Score are Weighted Average values).
Model Parameters Accuracy Precision Recall F1-Score

Swin Base 87.35M 0.985 0.98 0.98 0.98
ConvNext Base 87.35M 0.982 0.98 0.98 0.98
MobileNetV2 2.59M 0.948 0.95 0.95 0.95
Distilled MobileNetV2 2.59M 0.961 0.96 0.96 0.96

4 Future Scope

While promising in its progress, this work views itself as part of an evolving narrative with several
forward-looking paths. The gating mechanism currently processes raw images. However, incorporat-
ing the confidence of teacher predictions—using their proximity to ground truth labels—may offer a
nuanced approach to optimizing its decisions.
As it stands, both the teacher and student models handle 224x224 images. There’s potential for
teachers to process larger resolutions to enrich feature capture, while the student retains its smaller
224x224 input size. The dynamic resizing from the high-resolution source can ensure detailed
extraction without sacrificing efficiency.
Modern training strategies beckon; sophisticated learning rate schedules and advanced augmentation
methods such as CutMix, RandAugment are on the horizon. I am keen to implement Grad-CAM
visualizations to shed light on the distillation process, adding interpretability.
Perhaps the most exciting prospect is the scalability of the proposed architecture. With just two
teacher models now, it is designed to accommodate an expanded array. The unique application of
such a framework to ALL classification remains relatively uncharted, highlighting the possibility of
expansive inter-domain knowledge transfer. Ultimately, the goal is to leverage insights from these
varied models to elevate leukemia classification, potentially in a format that is both lightweight and
widely accessible.
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