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Abstract Leukemia is a life-threatening condition affecting people globally, mak-1

ing accurate diagnosis crucial for timely intervention. Consequently, researchers2

have been exploring automated methods to enable prompt action. The classification3

of leukemia into multiple subtypes according to WHO standards presents a unique4

challenge. Unlike binary classification, interclass features are highly similar, leading5

to misclassification. Ergo, we employ attention mechanisms to tackle this problem.6

Our proposed deep learning architecture combines transfer learning with attention7

mechanisms to classify subtypes of leukemia accurately. Using a publicly avail-8

able dataset of blood cell images that adhered to WHO standards, we illustrate the9

potency of our approach. Our DenseNet201 with CBAM model achieves a remark-10

able 99.85% overall accuracy without resorting to data augmentation, surpassing11

previous methods on this dataset and attaining state-of-the-art results compared to12

other leukemia literature. To interpret the model’s decision-making process and eval-13

uate the efficacy of the attention mechanism in identifying discriminating features,14

we showcase GradCAM images and intermediate layer feature maps generated from15

our custom CNN. The proposed approach enhances leukemia classification accuracy16

and efficiency, providing clinical decision-making insights.17

Keywords Leukemia classification · CNN · Transfer learning · Attention18

mechanism · CBAM · Feature map19

1 Introduction20

Leukemia is a malignant neoplasm of the hematopoietic system which manifests in AQ121

the bone marrow and bloodstream. The uncontrolled proliferation of white blood22

cells disrupts the normal formation of essential blood components such as platelets,23
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2 T. I. Sajon et al.

red blood cells, and other vital cells, leading to the development of leukemia [1].24

Leukemic cells can spread throughout the body and harm other organs and tissues.25

The American Cancer Society estimates around 59,610 new leukemia cases to be26

diagnosed in the USA in 2023 [2]. Leukemia is a complex disease with different27

subtypes, each with distinct characteristics and treatments. Acute Lymphoblastic28

Leukemia (ALL) is one of the most prevalent childhood cancers, accounting for29

approximately 75% of leukemia cases in children and about 25% of all pediatric30

malignancies. In contrast, ALL is relatively rare in adults, representing only about31

20% of all adult leukemia cases [3]. The onset of ALL is insidious, with non-specific32

symptoms such as fever, fatigue, and anemia, which may be mistaken for other com-33

mon illnesses [1]. Rapid screening and therapy are critical for improving the chances34

of a favorable outcome. Traditionally, diagnosis involves a combination of clinical,35

laboratory, and morphological criteria, including the evaluation of bone marrow and36

blood samples. However, manual examination of these samples is subjective, time-37

consuming, and may lead to inaccuracies in diagnosis [4]. Consequently, accurate,38

efficient, and automated diagnostic tools are required to aid in the early diagnosis of39

ALL and enhance its management.40

Although automated systems have shown promise in aiding leukemia diagnosis,41

several limitations and challenges persist, such as reliance on the French-American-42

British (FAB) categorization method instead of the expert-preferred World Health43

Organization (WHO) categorization, and underutilization of attention mechanisms.44

Addressing these limitations, we propose a novel three-tier architecture. In the initial45

tier, high-level features are extracted from blood smear images using a pretrained46

network. The second tier leverages a Convolutional Block Attention Module (CBAM)47

[5] to enhance model performance by capturing both spatial and channel information.48

Finally, the last tier consists of the classification module. We believe we are the first49

to employ CBAM for ALL classification. Moreover, to enhance the interpretability50

of the model, we present class activation maps and intermediate layer outputs to51

better understand the features learned by the model. Our research is motivated to52

explore the application of the WHO classification system and attention mechanisms53

to improve the accuracy and interpretability of ALL classification.54

2 Literature Review55

The classification of ALL has been a topic of active research. Using the ISBI-201956

challenge dataset, Zakir et al. designed a Convolutional Neural Network (CNN)57

architecture based on attention mechanism. They used VGG16 with Efficient Chan-58

nel Attention (ECA) to amplify and enhance the semantic features of ALL cells.59

Their model achieved 91.1% accuracy on the test set [1]. In their paper, Krzysztof60

et al. utilized MobileNetV2 to extract features from images and applied Decision61

Tree (DT), Random Forest (RF), and XGBoost (XGB) algorithms to classify the62

images. Tested on the publicly available ALL-IBD dataset, their model obtained an63

average accuracy of 97.4% [6]. Mustafa et al. used ten different CNN architectures64
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Attention Mechanism-Enhanced Deep CNN … 3

to extract features and classify 3256 PBS images from 89 suspected patients. Of65

the architectures tested, DenseNet201 achieved the highest accuracy of 99.85% [7].66

Using images from the American Society of Haematology (ASH), Anilkumar et al.67

developed LeukNet, a 5-layer CNN for the automatic classification of ALL cells.68

Initially, they used AlexNet for classification and achieved an accuracy of 94.12%.69

They then applied all the preprocessing techniques used in AlexNet to LeukNet and70

achieved the same accuracy of 94.12% [8]. Adnan et al. proposed the use of Multi-71

Attention EfficientNet models to differentiate between leukemic and healthy cells.72

They utilized EfficientNetV2S and EfficientNetB3 transfer learning architectures,73

incorporating a multi-attention module and a weighted attention average module.74

Their models attained 99.73% and 99.25% accuracy on the C-NMC-2019 dataset75

[9]. Niranjana et al. introduced a specialized CNN architecture called ALLNET,76

which, trained on the C-NMC-2019 dataset, obtained an accuracy of 95.54% [10].77

3 Materials and Methods78

3.1 Dataset Collection and Description79

A publicly available ALL dataset that was categorized per WHO standards served80

as the basis for our analysis. Images for the dataset were produced by the bone81

marrow lab at Taleqani Hospital in Tehran and were meticulously categorized by a82

qualified professional. This dataset comprised 3256 Peripheral Blood Smear (PBS)83

images obtained from 89 people with a presumptive diagnosis of ALL, including 2584

individuals who were found to be healthy (benign hematogones) and 64 individuals85

who were diagnosed with ALL [7]. Table 1 provides an overview of the dataset’s86

characteristics.87

Table 1 Dataset characteristics

Type Subtype Samples count Patients count

Benign Hematogones 504 25

Total 504 25

Malignant Pro-B ALL 804 23

Pre-B ALL 963 21

Early Pre-B ALL 985 20

Total 2752 64

Grand total 3256 89
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4 T. I. Sajon et al.

3.2 Data Preprocessing88

CNNs are capable of recognizing essential features in raw images, eliminating the89

need for extensive preprocessing. Nonetheless, specific preprocessing measures were90

necessary to enhance the training and diagnosis processes. To this end, the photos91

were resized to a uniform dimension of 224 × 224 × 3, and the pixel values were92

normalized between [0, 1] before they were fed into the neural network.93

Data augmentation methods are commonly employed to increase the number of94

training samples and minimize the risk of overfitting. However, it is worth noting95

that overusing augmentation may potentially obscure critical image features. Fur-96

thermore, our findings revealed that the exclusive implementation of CBAM was97

sufficient in achieving exceptional accuracy, rendering data augmentation unneces-98

sary. Therefore, data augmentation techniques were deliberately omitted from our99

approach.100

3.3 Convolutional Neural Network101

A Convolutional Neural Network (CNN) is a deep learning architecture optimized102

for image processing tasks. It employs a hierarchical approach to extract the features,103

utilizing convolution, pooling, normalization and fully connected layers, to extract104

higher-level features from the input data gradually. The final classification layer is105

utilized to assign probabilities to the output classes and identify the most proba-106

ble class. The CNN architecture is a powerful tool for image processing research,107

enabling the development of accurate and sophisticated models.108

Transfer Learning. Transfer learning is a type of machine learning technique involv-109

ing a pretrained model to perform a related but different task. The pretrained model110

has learned valuable features from a larger dataset like ImageNet, and the model111

can be fine-tuned on a different smaller dataset for better performance on the new112

specific task.113

In this study, we investigated four distinct transfer-learned architectures, namely114

DenseNet201, ResNet50, EfficientNetB6, and Xception, to extensively assess our115

strategy. DenseNet201 utilizes dense connections to alleviate the problem of vanish-116

ing gradients, allowing for better feature reuse and optimization [11]. EfficientNet is a117

family of scalable CNNs that use compound scaling to balance depth, width, and res-118

olution dimensions, and achieve high accuracy while minimizing computational cost119

[12]. ResNet50 incorporates residual connections, enabling the reuse of earlier fea-120

ture maps, enhancing training and generalization performance. It comprises residual121

blocks with identity and projection shortcuts for matching feature map dimensions122

[13]. Xception uses depth-wise separable convolutions, which factorize spatial and123

channel-wise dimensions of the convolution separately, reducing computation and124

increasing model capacity [14].125
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Attention Mechanism-Enhanced Deep CNN … 5

3.4 Attention Mechanism126

Attention mechanisms have emerged as a promising approach to improving deep127

learning models. This neural network component selectively focuses on regions of128

input images, capturing fine-grained details and contextually relevant features. By129

dynamically weighing the importance of different image regions, attention mecha-130

nisms have shown potential to enhance accuracy, robustness, and interpretability in131

image classification models [5]. The concept of attention mechanisms initially gained132

popularity in the domain of Natural Language Processing (NLP) through the work133

of Vaswani et al. [15]. There, the attention mechanism was computed using three pri-134

mary components: Query, Key, and Value. This idea was later adapted and extended135

to computer vision by Zhang et al. [16], who introduced the Self Attention Module.136

Convolutional Block Attention Module. The Convolutional Block Attention Mod-137

ule (CBAM) is a type of attention mechanism that leverages both spatial and channel138

attention mechanisms to selectively focus on salient image features while filtering139

out noise and irrelevant information. CBAM comprises two modules: CAM, or the140

Channel Attention Module, and SAM, or the Spatial Attention Module, and they141

have distinct roles. The CAM module produces a 1D attention map by taking the142

max-pooled and average-pooled values from the input feature map and applying two143

dense layers to obtain channel-wise attention weights. In contrast, the SAM module144

generates a 2D spatial attention map by computing maximum and average values145

across the channel dimension, concatenating them, and passing the result through a146

convolutional layer.147

Bc (A) = σ (MLP (AvgPool (A)) + MLP (MaxPool (A))) (1)148

149

Bs(A) = σ
(
a7×7

([
AvgPool (A) ; MaxPool (A)

]))
(2)150

Equation (1) is for channel attention and (2) is for spatial attention. The attention151

maps are multiplied element-wise with the input feature map, resulting in adaptive152

refinement of features in both the spatial and channel dimensions. A convolutional153

layer processes the refined feature map to capture these features, and the resulting154

output is added to the original feature map, generating the final output of the CBAM155

module. The overall attention mechanism for CBAM can be summarized as:156

Á = Bc(A) ⊗ A (3)157

158 ´́A = Bs( Á) ⊗ Á (4)159

From (3) and (4), ´́A represents the final output of CBAM [5]. Figure 1 depicts each160

layer in our implementation of the CBAM module. Here, the two lambda layers in161

the SAM calculate the maximum and average values in order to compute the spatial162

attention map.163
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6 T. I. Sajon et al.

Fig. 1 Our implementation of the CBAM block as proposed in [5]

Fig. 2 Custom CNN with a CBAM layer following each convolution layer. Here, (con1-conv4) are
the convolutional blocks, and (fc5, fc6) are the fully connected layers
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Attention Mechanism-Enhanced Deep CNN … 7

Fig. 3 Proposed transfer learning with CBAM attention architecture

3.5 Proposed Architecture164

Our approach began with the implementation of a handcrafted CNN integrated with165

CBAM, as illustrated in Fig. 2. To enhance the intermediate feature maps obtained166

from the previous convolutional layer, we utilized CBAM as a layer in each convo-167

lutional block. This allowed us to refine the feature maps through the application of168

channel attention using CAM, followed by spatial attention using SAM. The resulting169

output feature maps were then used for subsequent processing.170

To enhance the performance and robustness of our model, we adopted a trans-171

fer learning approach. Specifically, we utilized a pretrained CNN to extract features172

from the input data and obtained its outputs from the last convolutional layer. These173

outputs were then passed through a CBAM layer, which helped refine and highlight174

the most important features in the input. To further ameliorate the effectiveness of175

the network, we applied batch normalization to the output of the CBAM layer, which176

helps to improve the stability and speed of the training process. The normalized177

output was then flattened into a one-dimensional array. Next, we applied two dense178

layers with 512 and 128 nodes, respectively, with the activation function ReLu [17].179

The purpose of these layers was to acquire high-level representations of the input180

features and further improve the discriminative capacity of the model. To prevent181

overfitting, we applied a 25% dropout after the second dense layer. Finally, the clas-182

sification was performed through a softmax [18] layer, which allowed us to predict183

the class probabilities for the input image. This comprehensive pipeline of transfer184

learning, attention mechanisms, normalization, dense layers, and dropout helped to185

improve the model’s performance and robustness. Figure 3 presents a overview of186

our proposed methodology.187

Our research primarily aims to enhance the representation power of neural net-188

works by incorporating attention mechanisms. The proposed methodology involves189

the utilization of two modules for attention-based feature refinement, namely channel190

and spatial. By integrating CBAM, we are able to efficiently modulate the flow of191

information inside the network by learning which features to prioritize and which to192

suppress. Our experimental findings demonstrate that our method offers significant193

performance gains while keeping computational overheads low.194

605982_1_En_24_Chapter-online � TYPESET DISK LE � CP Disp.:26/12/2023 Pages: 12 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8 T. I. Sajon et al.

4 Results and Performance Analysis195

In our experimental setup, we trained the models for 75 epochs using a batch size196

of 24, until it was determined that the validation loss had essentially plateaued, with197

no further significant improvement in the remaining epochs. We employed Adam198

[19] as the optimizer, with a learning rate of 0.0001. We also made use of a callback199

to reduce the learning rate on a plateau. The categorical cross-entropy was selected200

as the loss function. Following preprocessing, the dataset was divided into train,201

validation, and test sets, with 60%, 20%, and 20% of the data, respectively, being202

assigned to each set.203

Subsequently, to gauge the effectiveness of our proposed transfer learning strat-204

egy that integrates attention mechanisms, we evaluated a number of cutting-edge205

transfer learning architectures, including DenseNet201, EfficientNetB6, Xception,206

and ResNet50. All models showed improvements over the custom CNN, with our207

modified DenseNet201 achieving the highest accuracy of 99.85%. Figure 4 illus-208

trates the training and validation accuracy and loss of the DenseNet201 model. The209

confusion matrices for both the custom CNN and the proposed DenseNet201 with210

CBAM model are depicted in Fig. 5. Table 2 provides a comprehensive summary of211

the performance of each model, including accuracy, precision, recall, F1-score, and212

support.213

Table 3 compares our proposed techniques with previous endeavors on the sameAQ2214

dataset in terms of overall accuracy. Although [7] achieved commensurate outcomes215

with the DenseNet201 architecture, their other models exhibited significant varia-216

tions in performance, with some achieving subpar results, indicating instability likely217

due to a lack of optimization. Our work addresses this issue, resulting in stable and218

consistent performance across our proposed models. Additionally, examination of219

the confusion matrix in Fig. 5 reveals that our DenseNet201 model made a single220

incorrect prediction, specifically for the Early Pre-B ALL class. In contrast, the221

previous highest-performing model, DenseNet201 from [7], had two erroneous pre-222

dictions for the same class. Furthermore, we conducted a comparative evaluation of223

Fig. 4 Training and validation accuracy and loss of proposed DenseNet201 with CBAM model
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Attention Mechanism-Enhanced Deep CNN … 9

Fig. 5 Model performance assessment with confusion matrix

Table 2 Class-specific evaluation measures (accuracy, precision, recall, F1-score, and support) for
each model using a scale ranging from 0.00 for 0% to 1.00 for 100%

Class Accuracy Precision Recall F1-Score Support

Proposed DenseNet201 with CBAM

Benign 0.990 1.00 0.99 1.00 102

Early 1.000 0.99 1.00 1.00 197

Pre-B 1.000 1.00 1.00 1.00 194

Pro-B 1.000 1.00 1.00 1.00 162

Proposed ResNet50 with CBAM

Benign 0.990 1.00 0.99 1.00 102

Early 1.000 0.99 1.00 1.00 197

Pre-B 0.995 1.00 0.99 1.00 194

Pro-B 1.000 0.99 1.00 1.00 162

Proposed Xception with CBAM

Benign 0.990 0.99 0.99 0.99 102

Early 1.000 1.00 1.00 1.00 197

Pre-B 0.990 0.99 0.99 0.99 194

Pro-B 0.994 0.99 0.99 0.99 162

Proposed EfficientNetB6 with CBAM

Benign 0.990 0.97 0.99 0.98 102

Early 0.990 0.99 0.99 0.99 197

Pre-B 0.995 1.00 0.99 1.00 194

Pro-B 0.994 0.99 0.99 0.99 162

Custom CNN with CBAM

Benign 0.961 0.97 0.96 0.97 102

Early 0.985 0.98 0.98 0.98 197

Pre-B 0.995 1.00 0.99 1.00 194

Pro-B 1.000 0.99 1.00 1.00 162
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10 T. I. Sajon et al.

Table 3 Comparison between our proposal and notable previous works on the same dataset

Methods used Data augmentation Overall accuracy (%)

EfficientNet [7] Yes 28.22

Xception [7] Yes 96.70

ResNet50V2 [7] Yes 97.85

NASNetLarge [7] Yes 98.16

DenseNet201 [7] Yes 99.85

Proposed EfficientNetB6 +
CBAM

No 99.24

Proposed Xception + CBAM No 99.39

Proposed ResNet50 + CBAM No 99.69

Proposed DenseNet201 +
CBAM

No 99.85

Table 4 Comparing proposed work with other literature

Dataset Methods used Overall accuracy (%)

ALL-IDB MobileNetV2 + XGB,RF,DT [20] 97.40

ASH LeukNet [8] 94.12

C-NMC-2019 VGG16 + ECA [1] 91.10

C-NMC-2019 EfficientNetV2s + Multi-Attention [9] 99.73

C-NMC-2019 ALLNET [10] 95.54

ALL dataset Proposed DenseNet201 + CBAM 99.85

our proposed system against the relevant literature, and the findings are presented in224

Table 4. Notably, our suggested methods have outperformed previous efforts.225

By evaluating multiple state-of-the-art transfer learning architectures, we were226

able to perform a comprehensive comparison and evaluation of our proposed transfer227

learning with attention architecture. This diverse selection of models allowed us to228

obtain a thorough understanding of the strengths and limitations of our strategy. As a229

result, we have reasonable grounds to draw informed conclusions about the efficacy230

of our methodology vis-á-vis existing techniques.231

4.1 Model Interpretability: What Our CNN Sees232

In this investigation, we offer two techniques to gain insight into model predictions:233

Class Activation Mapping and intermediate layer visualization.234

The Gradient-weighted Class Activation Mapping (Grad-CAM) is a widely235

employed visualization technique utilized to comprehend the prominence of a spe-236

cific class in a given image. Grad-CAM works by computing the gradients of the237
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Attention Mechanism-Enhanced Deep CNN … 11

Fig. 6 Unpacking the complexity with Grad-CAM analysis: (a, d) are input samples, (b, e) are the
respective class activation maps and in (c, f) activation maps superimposed on the samples provide
a visual representation of the regions of interest

Fig. 7 Uncovering the impact of attention: a is the output from the first convolution layer, and b is
the refined output achieved through subsequent CBAM attention layer

output class score relative to the feature maps of the final convolutional layer. The238

gradients are then globally averaged and weighted by the importance of each feature239

map. Lastly, the resulting weight map is multiplied with the feature map, which gen-240

erates the Grad-CAM visualization [21]. We utilized the Grad-CAM technique on241

six randomly chosen input samples, displayed in Fig. 6, and the resulting heatmaps242

demonstrate the regions that the model used to make its predictions. Furthermore, as243

depicted in Fig. 7, we analyzed the 32 feature maps generated by the first convolu-244

tional layer and the CBAM layer immediately following it. Our observations reveal245

that CBAM effectively refines the feature maps and increases their discriminative246

power.247

In sum, our proposed methods provide a deeper understanding of the model’s248

decision-making process, and the insights gained can be leveraged to improve per-249

formance and interpretability.250

605982_1_En_24_Chapter-online � TYPESET DISK LE � CP Disp.:26/12/2023 Pages: 12 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

12 T. I. Sajon et al.

5 Conclusion251

In this study, we introduce a new approach to automatic leukemia classification by252

incorporating transfer learning and attention mechanisms. Our research addresses253

two major gaps in the current literature: (1) the predominant use of the less-preferred254

FAB classification instead of the WHO system, and (2) the lack of attention mecha-255

nisms in prior studies.256

Our approach consistently yielded promising results on a dataset of Acute Lym-257

phoblastic Leukemia classified using the WHO methodology. Notably, our CNN258

architecture effectively refined the features of PBS images through the application259

of a CBAM module after the output of the pretrained network, thereby enhancing260

the discriminative ability of the model. Our optimization strategy involved tech-261

niques such as learning rate reduction, regularization, and dropout. Together, these262

approaches enabled us to achieve results that surpassed those of previous studies in263

the field, without using data augmentation.264

Moreover, we provided insights into the interpretability of our proposed model.265

We presented Grad-CAM images and output feature maps to reveal the regions266

of interest in the input images and the effectiveness of the CBAM integration in267

refining the feature maps, respectively. Our model demonstrated not only superior268

classification performance but also high interpretability, which is crucial in medical269

diagnosis.270

Moving forward, we plan to extend our study by exploring larger datasets, incorpo-271

rating segmentation techniques, and investigating the potential of vision transformers272

in leukemia classification. We hope that our work will inspire further research in the273

field of automated medical diagnosis and contribute to the development of more274

precise and effective tools for diagnosing leukemia.275
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